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Abstract 

The causes and etiology of Crohn’s disease (CD) are currently unknown although both host 

genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to 

determine the contribution of metabolites produced by the gut microbiota towards disease status 

of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was 

used to discern the masses of thousands of metabolites in fecal samples collected from 17 

identical twin pairs, including healthy individuals and those with CD. Pathways with 

differentiating metabolites included those involved in the metabolism and or synthesis of amino 

acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or 

negatively correlated to the disease phenotype and to specific microbes previously characterized 

in the same samples. Our data reveal novel differentiating metabolites for CD that may provide 

diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease 

therapy and prevention.  
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Introduction 

Crohn’s disease (CD) is an inflammatory bowel disease (IBD), characterized by chronic 

inflammation of the gastrointestinal tract. The exact etiology of CD is unknown, but both the 

host genotype and environmental factors play a role, and it is known that disease induction 

requires the presence of bacteria. No specific pathogen has been defined as a causative agent, but 

individuals with CD have an imbalance or ‘dysbiosis’ of their intestinal microbiota, or 

microbiome [1], [2]. Dysbiosis in turn leads to a breakdown in the détente relationship between 

the microbiome and the host immune system, through unknown mechanisms.   

Diagnostic and monitoring tools for CD are currently inadequate. Numerous serological 

biomarkers have been proposed for the diagnosis of CD. However, for clinical applications, none 

of the current markers stand-alone and they are therefore used in conjunction and as a 

supplement to endoscopy. Therefore, more accurate tools are needed for early diagnosis of CD; 

in particular non-invasive approaches that can be used in place of endoscopy. 

Our aim was to search for metabolic biomarkers of CD as evidence of microbial 

functions in the gut. Recent advances in nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) have made it possible to simultaneously assess thousands of metabolites 

corresponding to the “metabolome” and to determine end-points of metabolic processes in living 

systems [3]. NMR (1H NMR Spectroscopy) has revealed gut microbial contributions to 

metabolite compositions in different body fluids, including blood [4], urine [5], [6] and fecal 

extracts [7], [8]; and the latter has revealed some metabolites that are correlated to CD [7].  

 Although the information provided using NMR has been very valuable it is still limited 

by low resolution and sensitivity that only enables the annotation and quantification of a limited 
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number of lower molecular weight molecules. By contrast, ion cyclotron resonance-Fourier 

transform mass spectrometry (ICR-FT/MS) with an ultrahigh mass resolution enables 

differentiation of very subtle variations in thousands of mass signals, including higher molecular 

weight metabolites [9]. The combination of coupled metabolite separation technologies to 

spectrometry and spectroscopy enables a multidimensional approach for the structural 

identification of new metabolites as recently exemplified for markers of diabetes and early stage 

insulin resistance [10]. Therefore, in this study we used ICR-FT/MS with its high dynamic range 

and high mass accuracy (0.2 ppm) to obtain non-targeted profiles of elementary compositions in 

fecal samples obtained from individuals with Crohn’s disease.  
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Analysis 

Patient cohort 

The selection criteria and patient information for the twins studied in this experiment 

have previously been described [11], [12]. Patient information presented in Table S1, including 

responses to a questionnaire regarding the usage of antibiotics, non-steroidal anti-inflammatory 

drugs during the preceding 12 months, gastroenteritis within the preceding 3 months, and 

specific dietary habits have previously been reported [12]. Written informed consent was 

obtained and approved by the Swedish ethical committee. The sample cohort was comprised of 

15 twin pairs, with 7 healthy twin pairs, 4 pairs that were discordant for predominantly colonic 

CD (CCD), 2 pairs that were discordant for predominantly ileal CD (ICD), 2 pairs that were 

concordant for ICD, and 2 pairs that were concordant for CCD. There were a total of 8 

individuals with CCD (aged 20-70, mean 48), 6 individuals with ICD (aged 44-53, mean 49.8), 6 

healthy individuals with a sick twin (HD) (ages 20-70, mean 51.8) and 14 healthy individuals 

with a healthy twin (HH). In the HH group, 5 pairs were children (ages 5-11, mean 7.4) and 2 

pairs were of similar ages to diseased individuals (45-55 mean 50). All diseased individuals were 

in clinical remission according to the Harvey-Bradshaw score [13] with the exception of 2 

individuals (10b and 15a). Both of these individuals had endoscopic recurrence scores below 2 

[14] at colonoscopy suggesting that the Harvey-Bradshaw score did not indicate active CD. Fecal 

samples were placed in a freezer at -70 °C within 24 h of collection, until analysis. The use of 

human subjects for this study was approved by the Örebro County Ethical Committee (Dnr; 

167/03). 

Preparation of fecal water 
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 Fecal samples were diluted 1:60 (weight:volume) in cold (4°C) 50 mM sodium phosphate 

buffer (pH 8.0). The suspension was mixed in a gyratory shaker at 120 rpm for 10 min at 4°C 

and then centrifuged at 200 x g for 10 min at 4°C to pellet the debris. The supernatant was 

removed and centrifuged at 18,000 x g for 10 min to pellet the bacteria. The supernatant was 

collected and the pH was lowered to approximately 4.5 by addition of 0.25 mL of 1% formic 

acid to each mL of supernatant, with a resulting final sample dilution of 1:75. The fecal water 

samples were frozen and stored frozen at -70°C until analysis. The samples were extracted 20 

min after they were thawed at room temperature by solid phase extraction (SPE) using 1L 

cartridges filled with 100 mg of octadecy-bonded silica packing (Bakerbond, Mallinckrodt 

Baker, Griesheim, Germany) for desalination and deproteination of the sample. The cartridges 

were preconditioned with 2 mL of methanol and 2 mL of water acidified with 0.1% formic acid 

prior to the application of 0.5 mL of sample. The columns were washed with 0.5 mL of 0.1% 

formic acid and metabolites were eluted with 0.5 mL methanol.  

FT-ICR-MS analysis 

High-resolution mass spectra (resolution Δ(m/z)/(m/z) of 500.000 at m/z 500 in full scan 

mode) were acquired on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer 

(Bruker, Bremen, Germany), equipped with a 12 Tesla superconducting magnet and an Apollo II 

ESI source. Samples were infused with the micro-electrospray source at a flow rate of 120 µL/h 

with a nebulizer gas pressure of 20 psi, and a drying gas pressure of 15 psi at 250 °C. Negative 

and positive electrospray ionisation was used. Spectra were externally calibrated on clusters of 

arginine (m/z of 173.10440, 347.21607, 521.32775 and 695,43943) dissolved in methanol at a 

concentration of 10 mg/L; calibration errors in the relevant mass range were always below 0.1 
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ppm. Four MW time domains were applied in the mass range of 150 –2000 m/z. The ion 

accumulation time in the ion source was set to 2 s and 200 scans were accumulated per sample. 

Before Fourier transformation of the time-domain transient, a sine apodization was performed. 

The raw data were processed with DataAnalysis 3.4 (Bruker Daltonik, Bremen) software that is 

hard-coded in the instrument. Peaks exceeding a threshold signal-to-noise ratio of 3 were 

exported to peak lists. The extracted spectra were aligned though in-house software. 

Identification of differentiating masses and assignment to metabolic pathways  

Different multivariate analysis techniques including principal component analysis (PCA), 

hierarchical cluster analysis (HCA) and partial least square discriminant analysis (PLS-DA) were 

combined to reduce the data sets into a series of optimized and interpretable objects. The study 

of contribution of the different variables (m/z in this case) was done though the analysis of the 

regression coefficients. The statistical analyses were done with SIMCA-P 11.5 (Umetrics, Umea, 

Sweden), SAS version 9.1 (SAS Institute Inc., Cary, NC, USA) and the Statistical package “R” 

(v 1.8.1) for the heatmap visualization.  

The masses with the highest regression coefficient (an arbitrary cut off value > 0.0004) 

were chosen to be discriminant. Moreover these masses have a variable importance in the 

projection VIP>1 (where a VIP value of ≥1 is regarded as significant). The VIP is a computation 

of the influence of every x term in the model on the y variable (ICD, CCD, and Healthy). Larger 

VIP values indicate a greater influence of a term x on the y variable. 

We used a PLS-DA model to evaluate the m/z that contributed to separation between 

healthy vs individuals with CCD and ICD. The model gave good values for Q²(cum)=0.6 and 

R²(Y)=0.9. However the permutation test applied with 100 permutations revealed a possible over 
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fitting of the model. Thus the dataset was reduced excluding the masses with frequencies less 

than three and a PLS model with an orthogonal signal correction (OSC) was applied. The 

putative masses responsible for the metabolic differentiation were used to make queries in the 

KEGG database (Kyoto Encyclopedia of Genes and Genomes) through the MassTRIX software 

[15] including Homo sapiens and Bacteroides vulgatus as reference species. MassTRIX calls the 

KEGG/API (http://www.genome.jp/kegg/soap/) to generate pathway maps, where the annotated 

compounds and genes are highlighted using different colors-thus differentiating between 

organism-specific and extra-organism items [15]. The identification of certain metabolites as 

their exact masses in their given biological context was strategic in the context of searching for 

biomarkers for CD.  

Correlation of metabolites to microbial profiles 

The bacterial community profiles of the same fecal samples studied here have previously 

been reported [12]. To determine correlation between the microbial community composition and 

the metabolic profiles, distance matrices using Manhattan distances [16] for microbial and 

metabolic profiles were calculated independently, then Pearson correlation coefficients between 

the two distance matrices were calculated. Significances of the correlations were tested using the 

Mantel test with 1000 permutations. Cluster analysis of microbial and metabolic profiles was 

performed using binary data (Jaccard’s similarity index). Moreover the relation between the 

metabolites and the microbial profiles was analyzed with a PLS model with OSC, the 

metabolites were used as explicative variables. The relation of the first ten explicative masses 

with the different bacteria was expressed with the Heatmap. 
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Discussion 

Due to the tremendous individual diversity in the composition of the gut microbiota in 

humans and the corresponding anticipated diversity in the metabolites they produce, we expected 

it to be challenging to correlate specific metabolites to CD. Therefore, in this study, we focused 

on a twin cohort, described previously [2], [17], that includes healthy twin pairs, concordant 

pairs (both twins have CD) and discordant pairs (one twin is healthy and the matched twin has 

CD). The patients with CD were further differentiated depending on whether inflammation was 

primarily localized in the ileum (ICD) or in the colon (CCD) [2], [17]. A particular value of this 

patient cohort was the availability of existing data about the microbial profiles in fecal samples 

[17] and biopsies [2] from the same individuals that enabled the possibility of correlation of 

metabolites to microbial populations.  Our previous studies showed that there were significant 

differences in levels of several members of the microbial communities in the gut of individuals 

that had ICD compared to those with CCD or to healthy individuals; in particular dramatically 

lower abundances of Faecalibacterium prasnitzii and higher levels of Escherichia coli in 

individuals with ICD compared to the other two groups [2]. However, there was no clear 

distinction between the microbial community profiles in healthy individuals and those with 

CCD. Although the gut microbial communities of healthy twins were more similar to each other 

than to other individuals in the sample cohort, this similarity was no longer evident when 

comparing twin sets where one or both twins were sick [17].  

In this study, we used several multivariate statistical approaches to analyze the 

metabolites present in the liquid phase (fecal water) of the same fecal samples examined earlier 

[17]. First, using principal components analysis (PCA) we found that the metabolomes of 
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individuals that had ICD grouped separately from those with CCD and from healthy individuals 

(Supplementary Fig. S1). Some of the healthy individuals were young (Supplementary Table 1) 

and their metabolomes grouped separately from the healthy adults on the PCA plots 

(Supplementary Fig. S1). This distinction between healthy young and old was not evident in our 

previous analyses of the microbial community compositions [17]. An example of a 

discriminating metabolite that contributed highly to the grouping of the young was 5β-

cyprinosulfate, a bile acid that was more abundant in young subjects (P<0.003) compared to all 

other groups. Because there were no young individuals with CD in this study, we continued with 

adults only for further statistical discrimination of diseased from healthy groups.  

 Using a partial least squares (PLS) statistical approach on corrected mass data the 

separation between disease phenotypes was even more pronounced than when using the PCA 

model, with a clear separation of individuals with ICD from those with CCD and from healthy 

individuals (Fig. 1A) and some examples of differentiating metabolites are shown in Figure 1B. 

This differentiation according to disease phenotype that was seen using both the PCA and PLS 

approaches provides further support to the recent hypothesis that ICD and CCD are different 

disease phenotypes of CD. The outlier with CCD was the youngest of our Crohn's patients (born 

1986) and had only had the disease for 4 years at the time of sampling, whereas all the others 

have had the disease for >10 years.  

The 2nd component of the PLS model also revealed a clear separation, not only between 

the individuals with ICD versus CCD and healthy, but also between CCD and healthy. These 

data are the first that we have seen from this sample cohort that differentiate healthy from CCD 

individuals. Therefore, the resolution of separation of the groups was higher for the metabolite 
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profiles than for the microbial community profiles [17], thus demonstrating the potential for use 

of metabolomics as an approach for accurate disease diagnosis. One reason for the higher 

discrimination of the metabolite data compared to the microbial data could be the direct link of 

metabolites to function since they represent the final signature of enzymatic processes occurring 

in the gut. By comparison, detection of microbial presence based on DNA targets may be 

misleading since many species in the gut may be dormant, dead, or transient and this information 

is not available when assessing DNA alone. Another explanation for the difference between 

DNA-based surveys and metabolite-based surveys could be that some microbes may be present 

and active in both diseased and healthy individuals, but may not have a significant effect on 

levels of the metabolites that we are screening for. 

Metabolites within a broad range of pathways contributed to the differentiation of healthy 

from diseased individuals, as well as between disease phenotypes (Fig. 2A, Table 1). From the 

total number of 18706 measured masses, we found that 7919 were discriminating for a specific 

disease phenotype: 2155 for ICD, 3113 for CCD and 2650 for healthy.  

 Of the discriminating masses 13.3%, 9.5% and 9.3% for ICD, CCD and healthy groups, 

respectively, could be assigned to metabolic pathways using MassTRIX. However, 89.6% could 

not be assigned using MassTRIX software indicating that the available databases used for the 

identification of masses are yet limited by incompleteness. Some of the unassigned masses were 

interesting, such as the negative ion at mass-to-charge ration (m/z) of 229.1557 or 391.2853 (see 

Fig. 1B), that were characteristic for ICD patients. Pathways with differentiating metabolites 

included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids 

and arachidonic acid and these are discussed in more detail below.  
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 We found numerous masses corresponding to metabolites within the tyrosine metabolic 

pathway (Fig. 2B) that discriminated diseased from healthy groups. For example, dopaquinone, 

an oxidation product of dopa and an intermediate in the formation of melanin from tyrosine, was 

more abundant (P<0.05) in CD patients (both CCD and ICD) than in healthy individuals. L-

DOPA has been observed at elevated levels in inflamed mucosa of IBD patients [18]. There is 

also some evidence that polymorphisms in the dopamine receptor D-2 play a role in CD [19]. In 

addition, 4-hydroxyphenylacetylglycine and (Z)-4-hydroxyphenylacetaldehyde-oxime 

contributed substantially to the separation of CCD individuals. In a previous study 4-

hydroxyphenylacetylglycine in urine was negatively correlated to the abundance of 

Faecalibacterium prausnitzii in the gut [5]. By contrast we found higher levels of 4-

hydroxyphenylacetylglycine levels in the feces of a subset of patients with elevated F. prausnitzii 

abundances previously published from the same samples [2]. These differences could be due to 

the different sample origins in the different studies; i.e. urine compared to feces. In our previous 

studies and others F. prausnitzii was more abundant in healthy individuals compared to 

individuals with Crohn’s disease [2], [20]. These results suggest there could be a link between F. 

prausnitzii and the metabolite 4-hydroxyphenylacetylglycine that warrants further study.  

Increased amounts of metabolites involved in tyrosine metabolism coincides with earlier 

reports of increased transcripts of genes involved in tyrosine metabolism in peripheral blood 

mononuclear cells from Crohn’s patients [21]. However, it is not clear what (if any) role 

increased tyrosine metabolism may play in CD. Interestingly, protein tyrosine phosphatases have 

been associated with autoimmune diseases [22], although such mutations have not been 

correlated to CD. 
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The amino acids tryptophan and phenylalanine were also indicative of the ICD phenotype 

(Table 1). The presence of tryptophan in the feces might correspond to a subset of previously 

described CD patients with a specific depression of blood tryptophan levels [23]. Interestingly, 

one ICD individual did not have detectable levels of tryptophan or phenylalanine, and this 

individual also had the lowest abundance of mucosal E. coli [2], compared to the other ICD 

individuals. Although other organisms could also be correlated to these metabolites, it would be 

of interest to further investigate any links between E. coli abundance and amino acids in the gut. 

Previous studies [24] have shown that E. coli isolated from CD patients have pathogen-like 

behavior in vitro, and may play a role in the inflammatory process. Marchesi et al. [7] also 

observed increased levels of some other amino acids in fecal samples of CD patients with active 

disease (ours were in remission), but these were different amino acids than those we found; i.e. 

alanine, isolueucine, leucine and lysine. The presence of amino acids in the feces of ICD patients 

in general may be the result of malabsorption resulting from the shortening of the small bowel or 

due to subclinical inflammation, or conversely the result of secretion into the bowel. Regardless 

of the underlying mechanism, these results suggest that a special consideration of amino acid 

balance should be made for patients with active disease as well as those in remission.  

Many masses corresponding to metabolites within the bile acid biosynthesis pathway 

contributed to the segregation of disease phenotypes. In particular, the mass corresponding to 

glycocholate was prevalent in a majority of individuals with CD (Table 1), but not detected in 

healthy individuals. Masses corresponding to taurocholate, 3α, 7α, 12α-trihydroxy-5β-cholanate 

and chenodeoxyglycocholate were also particularly high (P<0.001) in ICD patients (Table 1). 

The majority of bile acids are reabsorbed in the distal ileum, largely accomplished by an apical 
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sodium dependent bile acid transporter, and thus ileal resection could explain the reduced bile 

acid absorption in ICD patients. However, only 1 of the 4 CCD patients with glycocholate in the 

feces had undergone resection surgery. This is consistent with the finding that patients with and 

without ileal resection have altered bile composition [25]. Increased bile in the feces may 

indicate that although these subjects were in remission they were nevertheless experiencing sub-

clinical inflammation as bile acid absorption has been shown to be inhibited by inflammation 

[26], or increased mucosal permeability [27]. A detrimental feedback loop could be created 

where inflammation results in reduced bile absorption, therefore increased bile in the lumen, 

which in turn causes increased inflammation.  

Masses corresponding to both saturated and unsaturated fatty acids, including oleic acid, 

stearic acid, palmitic acid, 6Z-, 9Z-, and 12Z-octadecatrienoic acid, linoleic acid and arachadonic 

acid, were also higher in patients with ICD compared to the other groups (Table 1). Fernandez 

Baneres et al. [28] previously reported elevated levels of arachidonic acid and linoleic acid in 

colonic mucosa of CD patients, consistent with our results from fecal samples, but they also 

found reduced amounts of oleic acid in the mucosa, contrary to the increased levels we observed.  

Arachidonic acid is particularly interesting because it is known to mediate inflammation 

and the functioning of several organs and systems either directly or upon its conversion into 

eicosanoids. Arachidonic acid has previously been shown to increase the expression of the 

intracellular adhesion molecule (ICAM)-1, which is involved in the recruitment of leukocytes, 

suggesting another role of this molecule [29]. Linoleic acid and arachidonic acid are also 

essential for the synthesis of prostaglandins (PG), which are important immune signaling 

molecules. However, in our study the increased abundances of these fatty acids did not 
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correspond to levels of PG (see below) and further studies are necessary to determine their 

possible links and correlations to CD. 

Masses corresponding to PG and their breakdown products including PGF2α and 2,3-

dinor-8-iso-PGF2α, thromboxane/6-Keto-PGF1α/PGI2 and PGE2 were more prevalent in 

healthy individuals (including the young group) than those with CCD and ICD (Table 1). The 

role of PG as immune signaling molecules is particularly interesting as CD is associated with 

disregulated immune function. CD-associated alleles have recently been negatively correlated to 

quantitative expression levels of prostaglandin receptor EP4 (PTGER4) [30] and PTGER4 

knockout mice experience more severe colitis in the dextran sodium sulfate model of colitis. The 

reduced levels of PGs that we observed may reflect a reduced absorption of their precursors, 

arachidonic acid and linoleic acid, as indicated above. While we observed reduced prostaglandin 

levels in CD patients that were in remission, PG particularly PGE2, have been observed to be 

more abundant in patients with active CD [31]. This is consistent with the fact that PGE2 is 

proinflammatory, acting through the EP-2/4 receptor on dendritic cells inducing the expression 

of IL-23 resulting in a TH17 phenotype associated with CD [31]. Therefore, reduced PG levels 

in CD patients in remission observed here may make them susceptible to relapse, although 

elevated levels during active disease could be a cause of tissue damage. Intriguingly, 3-(4-

hydroxyphenyl)-propionic acid, that has previously been shown to suppress PGE2 production 

[32], was particularly elevated in a subset of CCD and ICD individuals.  

Manhattan distances were calculated from the metabolic profiles of all individuals to 

determine whether the gut metabolomes of twins were more similar to each other than to 

unrelated individuals. The inter-twin similarity (mean ± SE) of healthy twins (0.513±0.035) and 
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concordant twins (0.431±0.070) was greater (P<0.001) than that of discordant twins 

(0.276±0.048). This coincides with the reduced similarity of microbial profiles previously 

observed in the discordant twins [17]. A correlation between the metabolic and microbial 

distance matrices (r=0.348, P<0.001) coincides with findings from Li et al. [5] correlating fecal 

microbial profiles to urinary metabolites, indicating a contribution of bacteria to overall 

metabolic profiles in the human host. We observed a stronger correlation between metabolic and 

microbial similarities when making within twin comparisons (r=0.748, P<0.001) strengthening 

the hypothesis that genetics plays a role in the formation and maintenance of the intestinal 

microbiome (Fig. 3). The most striking observation from the cluster analysis (Fig. 3) was the 

similar division of clusters according to the disease phenotype for both the microbial and 

metabolite data reinforcing the link between microbial community structure, function and 

disease. 

Subsequently, we also correlated the metabolomes to the relative abundances of specific 

bacterial populations within the same samples. We used a PLS model with relative abundances 

of specific microbial populations as the Y matrix and the m/z data as the independent variables to 

correlate the MS data to microbes and disease status (Fig. 4A). The masses were correlated to 

predefined key species that we previously found to be significantly more or less abundant 

depending on the disease phenotype of the host [2], [17]. For example, Bacteroides vulgatus 

(BV), B. ovatus (BO) and E. coli (EC) were present at significantly higher levels in the ICD 

group, whereas F. prausnitzii (FP) and B. uniformis (BU) were more abundant in the healthy and 

the CCD groups. The 10 masses with the highest regression coefficient value for each of the 5 

bacteria indicated above were assigned in MassTRIX (Table S2).  The correlation coefficients 
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were computed using bacterial and MS abundances and these data were expressed in a heat map 

for visualization of the data clustering (Fig. 4B). In this analysis the individuals clustered mainly 

into two groups: 1) ICD and 2) healthy + CCD, similar to what we found with the PCA plot of 

the original metabolite data (Fig. S1). Bacteria that were more abundant in individuals with ICD 

(BV, BO and EC) were those that were most strongly correlated to bile acids, including 

taurocholic and cholic acids, and fatty acids, including stearic, and docosapentanoic acids. 

Conversely, bacteria that were more abundant in healthy or CD phenotypes (BU and FP) were 

correlated to phospholipids and flavin mononucleotide (FMN). The correlation of these 

metabolites to specific bacterial groups merits further attention, such as the causality of the 

relationship between, E. coli and elevated levels of taurocholic acid. It should be kept in mind, 

however, that other bacteria that weren’t specifically included in this screening could be 

contributing to the metabolite profiles seen. 

In summary, this study demonstrates the potential of metabolomics to provide a means to 

differentiate disease phenotypes and to give new insights into the etiology of Crohn’s disease. 

Our study also emphasizes the importance of metabolites produced by the gut microbiota for a 

healthy gut environment. The analysis procedure was rapid to perform and resulted in highly 

accurate mass data. Several masses were found that differentiated healthy, ICD and CCD 

individuals. Interestingly, the similarity of metabolite profiles in healthy monozygotic twin pairs 

underscores the importance of genetics in determining the nature of the gut environment, 

including the bacterial species that are most dominant and the metabolites they produce. Further 

investigation of those masses that were important in differentiation of disease phenotypes, but 

that could not be assigned to structures, will be an aim for the future using structure 
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identification tools involving hyphenated multidimensional separation, spectrometric and 

spectroscopic tools.   

Our results pinpoint significant differences in the types and number of metabolites within 

specific pathways, including tyrosine and phenylalanine metabolism and bile acid and fatty acid 

biosynthesis that could be of key importance for different Crohn’s Disease etiologies. Thus, not 

only the identified individual metabolites, but also the pathways they belong to, could lead to 

future therapeutic biomarkers or drug targets.  
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Figure legends 
 
 

Figure 1: (A) Score and loading scatter plot of PLS analysis (Q²(cum)=0.96, R²(Y)=0.95). 

(●=ICD, ●=CCD and ●=Healthy). The masses with the highest regression coefficients were 

considered as discriminant. Coordinates on the figure axes are x 108. (B) Example of a 

differentiating metabolite for ICD (assigned at m/z of 391.2853) that is up regulated in the ICD 

group but the structure is unknown. (C) Mass at m/z of 407.2802 corresponding to 3α, 7α, or 

12α-trihydroxy-5β-cholanate within the bile acid biosynthesis pathway. The intensities in B and 

C were normalized.  

 

Figure 2. (A) KEGG pathways that discriminated the three groups: ICD CCD and healthy. The 

m/z were selected after the validation of PLS model; (B) Tyrosine metabolism pathway, the red 

metabolites were identified and present in the ICD group. Green shading refers to enzymes that 

were annotated in Bacteroides vulgatus. 

 

Figure 3. Similarity plot (using Jaccard’s index) of (A) microbial composition based on binary T-

RFLP data and (B) ICR-FT/MS data, respectively, from fecal samples of individuals with ICD 

(blue), CCD (red) and healthy individuals (green). Individuals were numbered according to 

Table S1, and as previously defined (11). Boxes indicate twin pairs that share the most similar 

metabolic and microbial profiles. Note: metaproteome data from the same fecal samples for 

individuals 6a and 6b have recently been published [33]. 
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Figure 4. PLS loading plot (A) where bacterial abundance defined the Y matrix and ICR-FT/MS 

data were plotted as predictors of differentiating bacteria based on their regression coefficients. 

Masses with the greatest regression coefficients for specific bacterial populations that were more 

abundant [B. ovatus (BO), B. vulgatus (BV), and Escherichia coli (EC)] and less abundant 

[Faecalibacterium prausnitzii (FP) and Bacteroides uniformis (BU)] in the feces of individuals 

with ileal Crohn’s disease (ICD) compared to individuals with colonic Crohn’s disease (CCD) 

and healthy (H) individuals are identified in the heat plot (B). The heat plot indicates the 

abundance of masses, the predicted metabolite, the bacteria that were positively correlated to that 

metabolite and whether the metabolite was positively (+) or negatively (-) associated with ICD. 

The clustering on the x-axis is according to disease and that on the y-axis is according to the 

relative abundances of the same bacterial populations selected in (A) and corresponding 

abbreviations are given on the first column to the right of the heat plot.  Individuals on the x-axis 

are coded according to [17]. Each cell is colored based on the detected level of the predicted 

metabolite: 

High  Low  

 



Table 1. Identified fecal metabolites that contribute to the discrimination of disease phenotypes.  
 
 
                   CCD                   Healthy          ICD  
Pathway Metabolite Mean1 Detected 

(n/8) 
Mean1 Detected 

(n/10) 
Mean1 Detected 

(n/6) 
P 

Tyrosine metabolism 2-Carboxy-2,3-dihydro-5,6-
dihydroxyindole/dopaquinone 

202889263a* 
 

5 133363 b 1 2616539 b 4 .015 

 4-hydroxyphenyl-acetylglycine 8699313 a * 5 0 b 0 140068 b 1 .012 

 (Z)/4/hydroxyphenyl-acetaldehyde-
oxime 

502918 a * 
 

4 0 b 0 0 b 0 .006 

Amino acids Tyrosine 335531 b 3 86251 b 1 1441491 a * 6 .001 
 Tryptophan 208343 b 2 0 0 1087303 a * 5 .001 
 Phenylalanine 0 b 0 0 0 1405997 a * 5 .001 
Bile acid metabolism Glycocholate 715048 b * 4 0 0 1847470 a * 5 .001 
 Taurocholate 312872 b 2 179560 b 2 14227172 a * 5 .002 
 Trihydroxy-6β-cholanate 20481784 b 8 16410877 b 10 1016307115 a* 6 .001 
 Chenodeoxyglycocholate/ 

Glycochenodeoxycholate 
335746 b 2 83591 b 1 1200688 a * 5 .002 

Fatty acid biosynthesis Oleic acid 451036 b 2 580092 b 3 5745324 a * 5 .010 
 Stearic acid 661070 b 3 687268 b 5 2658962 a * 5 .021 
 Palmitic acid 357430 b 2 184491 b 2 2476141 a * 5 .006 
 arachidonic acid 0 b 0 0 b 0 715296 a * 3 .004
 octadecatrienoic acid 0 b 0 0 b 0 568143 a * 3 .005 
 linoleic acid 920810 b 3 778285 b 4 5202328 a * 5 .022 
Arachidonic acid  prostaglandin F2α 607077 4 1400944* 9 977053 4 .142 
metabolism/ 
prostaglandins 

2,3-dinor-8-iso-prostaglandin F2α 4002093 8 4048724* 10 1918427 6 .093 

 prostaglandin F1α 1216394 b 7 2482457a * 10 812282 b 4 .017 
 prostaglandin E2α 1726834 8 2662085* 9 1077826 5 .088 
Phenylalanine 
metabolism 

3-(4-hydroxy-phenyl)propionic acid/ 
3-(4-hydroxyphenyl)lactate 

2945178 ab* 
 

4 513000 b 4 3632083 a * 6 .001 

*Indicates the group discriminated by the given metabolite in PLS-DA; n, indicates number out of the total number of individuals in each disease category. 
1Mean, refers to the mean amount (daltons) of the metabolite detected in all individuals within a given disease category.  
P values indicate a significant difference between groups based on Anova; different subscript letters indicate groups that differed significantly (<.05). 
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